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ABSTRACT

Trapped modes in a warm plasma slab parfially‘ filling a parallel
plate waveguide are studied. A two fluid model with a scalar pressure
term for electrons is used to obtain the field solutions and dispersion
equations for both a symmetric and antisymmetric longitudinal E
field. The dependence of the dispersion relations on electron temperature,
slab thickness, and waveguide width is studied.

The quasistatic dispersion equation and a dispersion relation
obtained by a heuristic argument are compared with the more rigorous
dispersion relation and the regions of validity are discussed, Good
agreement is found between experimenté,l data measured in a cylindrical
system and the theoretical results of the slab geometry, Finally,
the effects of L.andau damping and electron-neutral collisional damping

are considered,



1 INTRODUCTION

1.1 STATEMENT OF THE PROBLEM AND RELATED STUDIES

In recent years, much interest has been focused on the
propagation of trapped modes in homogeneous bounded
plasmasl_lz° We will define trapped modes to be those
waves whose field solutions are damped exponentially in the
outward direction from the plasma boundary. The first six
references ciﬁed above study wave propagation in cold
plasmas and the remaining six consider propagation in warm
plasmas. Including the electron temperature in the
development effects the trapped wave modes in two signifi-
cant ways. First, it serves as a mechanism for ion body
waves or what are often called Tonks-Dattner resonancesll’lq
Second, the electron body and surface waves have a finite
group velocity for large wave numbers which asymptotically
approaches the electron thermal velocity.

In one of the first significant papers on wave propa-
gation in a confined plasma, Trivelpiece and Gould2 used
a quasistatic treatment to study electron surface waves in
a cold plasma column. This work was extended by Diament,
Granatstein, and Schlesinger11 to include finite electron
temperatures. Their analysis employed a fluid equation
for electrons and the full set of Maxwell's equations.
Ions were neglected. Andersson and Weissglaslo included
ions via a two fluid model and considered the propagation

of surface waves and body waves in a partially filled

circular plasma waveguide for frequencies bhelow Wpi-



In the present work, the field equatioans and’dispersion
relations are developed for a warm, homogeneous plasma slab
partially filling a parallel plate waveguide. A plane
geometry was chosen because of the simplification in the
analysis. In the second chapter, the field components and
dispersion equations are obtained for both a symmetric and
antisymmetric longitudinal E field component. Symmetric
longitudinal E field solutions are similar to the circularly
symmetric case in cylindrical geometry while antisymmetric
iongitudinal E field solutions bear similarity to the
dipole mode. 1Ion effects and electron temperature effects
are included in this development. Discussion of the
dispersion equation in the third chapter is restricted to
trapped modes. The effects of changing the electron
temperature, the slab width, and the waveguide size are
studied. Finally, in Chapter 4 we examine the different
approximations used to simplify the study of trapped mode
propagation. In particular, the heuristic and quasi-
static approximations are discussed and their limitations

determined.

1.2 DEFINITION OF SYMBOLS

The following symbols will be used in this paper:

a one half the width of the plasma
slab
b one half the distance separating

the conducting plates

c free space speed of light



]

i

KT
(—=2)
m
e
_CB
wpe
[N
wpe
wpe
C
2
(p°- =
C
2
(g°- 2
w
2
2
(B~ - 5

absolute value of the charge of an
electron

Boltzmann constant

mass of an electron

mass of an ion

perturbed electron density about n,
perturbed ion density about n,

unperturbed electron and ion
density

electron temperature

ion temperature

electron thermal velocity

normalized longitudinal propagation
constant

normalized wave frequency

normalized electron plasma
frequency

longitudinal propagation constant

transverse propagation constant in
the plasma

transverse propagation constant in
the plasma

transverse propagation constant in
the dielectric



De

Di

pe

pi

dielectric constant in a vacuum

2 2
wpe pi
, 2
w A
2
(45
pi
f‘
w2
relative dielectric constant
wavelength of the wave
kTe 1
5 electron Debye length
o€
kT, 1 _
——=)? ion Debye length
e
o

frequency of the wave
electron plasma frequency

ion plasma frequency



2 FIELD SOLUTIONS AND DISPERSION EQUATIONS

2.1 DESCRIPTION OF THE MODEL

The plasma slab as drawn in Fig. 1 will be assumed
infinite in the y and z directions and contained between
X = +a by a dielectric having a reiative dielectric
constant K. The dielectric is bounded at x = +b by
parallel plates having an infinite conductivity. We will
assume that fhe plasma is homogeneous and isotropic. The
effects of electron temperature are included by assuming
a scalar pressure term proportional to Te in the fluid
momentum equation for electrons. The ion temperature is
assumed to be much smaller than the electron temperature
and therefore is neglected.

For mathematical convenience, we will consider a

monochromatic wave of the form oL (wt-By)

propagating in the
y direction. Because of the geometry, we may assume that
none of the field expressions are dependeht on z. The
linearized fluid equations and Maxwell's equations

necessary to describe the field quantities inside the

plasma are:

i

n, = %ﬁno v v, (1)
i —

n, =5 o, v . vy (2)

2
— —_ iw —
v o= =L E = vV n (3)
e m n_w e
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CONDUCTOR —

DIELECTRIC

DIELECTRIC

CONDUCTOR -

A PLASMA SLAB PARTIALLY FILLING A
PARALLEL PLATE WAVEGUIDE

FIGURE |



- _ _ _ie =

vi - m,w E (4)
i

Ve E=5~ (n, -n) (5)
€ 1 e
o

V- H=0 (6)

Vx E = —iwp H (7)

Vx H = noe(Va - Vé) + iweoﬁ (8)

In the dielectric region, Eds. 5 and 8 must be modified

as follows:
V' E=0 (9)
Vx H = iwe K E (10)

In the above equations, quantities describing the
electrons are subscripted with an "e" and similarly, ion
gquantities are.subscripted with an "i': Vé and Vi are
the perturbed values for the electron and ion velocities,
respectively, and n, and n, are the respective electron

and ion densities perturbed about the value n,s which is

the unperturbed number density for both ions and electrons.

2.2 DERIVATION OF THE FIELD SOLUTIONS

Let us assume a transverse magnetic mode propagating



in the y direction. For a < x < b, taking the curl of

both sides of Eq. 10 gives us:

VxVxH= V(Vv:- H - Vv H = iwe K vx E

or
82Hz 2 -wz
T—(ﬁ —'—Q- K) HZFO
ox C
If we consider only a symmetric expression for E_, i.e.

y
an antisymmetric expression for the transverse H field,

the solution to the above homogeneous wave equation for
H_ is

V4

HZ = A sinh 6x + B sgn X cosh 6x

where 6§ is defined by the equation

and sgn x equals plus one when its argument is greater than
zero and minus one when its argument is negative.
Using Eq. 10 again, the remaining two field

quantities for a < x < b may be written as follows:

id

y
we 0K

(A cosh 6x + B sgn x sinh 6x)



EX - -B (A sinh 6x + B sgnx cosh 6x)
we K '
o
To obtain field solutions for the quantities inside
the plasma (0 < x < a), a similar procedure will be used.

Taking the curl of Eq. 8

V x Vx H= =V H=nOeVX(Vi~Ve)+1o.)eo Vx E
and making the same assumptions as mentioned previously
in this section, we obtain the following differential

equation for HZ:

2
8 H 2
2
—= - (87 - 5IH_ =0
X c

where ¢ is defined by the equation

The solution that satisfies this differential equation

for HZ is

==
I
Q
0}
o
=]
iny
<2

X (11)
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Equation 8 is used to obtain Ey, Using Egs. 1-5,
the quantities V; and Vé can be written in terms of the

unknown quantity E. The solutions are:

— . ]’_e —
Vi = E
m.w
* 2
o ie = iw ‘o @ 12
v, = E + (25— -1 (v B
-mew 'noew w

Substituting these expressions into the y component

of Eq. 8 gives us

(V: E) =~ —=

where €, is defined by

Using Eq. 7 to obtain —3—37 ( v- E) and substituting the
expression for HZ from Eq. 11 we get the following

equation for Ey:

ine € 82E BZW%+ W2
+ inO (e - ——;—2—) EY = (;—2- €+ —1)’)/1C COSh’le




_11...

The solution to this differential equation is

g - N
y

C cosh le + 1iD cosh vzx

w €
€0

where

2 1

Vg % (B2 S5t )2
2 W2

N E+

By a similar method, we obtain the following solution

for EX:

Y
E. = - B C sinh ylx -2 D sinh yzx

X
we € B

We have obtained our full set of T M mode field
solutions for a traveling wave having a symmetric electric
field component in the direction of propagation. By using
the same procedure, it is also possible to get a set of
solutions inside the plasma and the dielectric for a
traveling wave having an antisymmetric longitudinal
electric field component. A summary of the solutions are

presented below:

2.2.1 Field Solutions for a Symmetric Longitudinal
E Field

1.) 1Inside the plasma (0 < x < a)

H, = (C sinh le)ei(wt_ﬁy) (12)
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'y > P
Ey = i( L C cosh YX + D cosh yzx)el(wt—ﬁy)
we _¢€
’ (13)
Y . _
EX = - (——E——- C sinh 71X+ 2 D sinh sz)e;(wt BY)
we € B

(14)

2.) Inside the dielectric (a < x < b)

(A sinh 6x + B sgnx cosh 5x)ei(wt_ﬁY) (15)

HZ =
E, = 22 (A cosh 6x + B sgnx sinh 6x)ei<wt_ﬁy>
y we K
o
(16)
E, = - —P— (4 sinh 6x + B sgnx cosh 6x)e’ (“T7PY)

we K
o
(17)
2.2.2 VField Solutions for an Antisymmetric Longi-

tudinal E Field

1.) 1Inside the plasma (0 < x < a)

H, = (C' sinh le)el(wt—py) (18)
Yy | i (wt-py)
E_ = 1i( C' sinh v.x + D' sinh v_X)e
y We € 1 2
O
(19)
B Y2 i(wt-y)
EX = - ( C' cosh vy.x + =— D' cosh yzx)e
WE € 1 B
[0}

(20)



- 13 -

2.) Inside the dielectric (a < x < b)

H, = (A" cosh 6x + B' sgnx sinh 5x)e1(wt—5)
(21)
E_ = -8 (A' sinh 6x + B' sgnx cosh 6x)el(wt_ﬁy)
y we K '
o
(22)
Ex - - B (A' cosh 6x + B Sgnx sinh 6x)e1(wt_ﬁy)
we K
o
(23)

2.3 DERIVATION OF THE DISPERSION EQUATIONS
In order to determine a dispersion relation for either
of the previously mentioned cases, we impose the following

boundary conditions:

E, lyep = © (24)
By ‘x=a_= By ‘x=a+ (25)
Hy ‘x=a__= iy ‘x=a+ (26)
exl x=a_~ © 27)

The first three of these conditions are obtainable from
Maxwell's equations. The fourth condition is a necessary

assumption in order to close the set of equations. 1In
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writing this equation, we are assuming that the plasma-
dielectric interface acts as a reflector to electrons
having a component of velocity in the x direction.
Applying these boundary conditions gives us the following
dispersion equations:

1.) For symmetric E

2
W
¢ tanh 8(a-b) = v, coth v,a - -Ej L coth v,a
K w 'Yze+
(28)
2.) For antisymmetric Ey
2
e wpe Qz
— tanh &6(a-b) = Y1 tanh Vla - 5 tanh Y o2
K w ’Yze+
(29)

In order to simplify graphing the above dispersion
equations, we will use the parameters Y = w/wpe and
X = cﬁ/wpe, Since wpi <L wpe’ the dispersion

equations in terms of X and Y may be written as follows:

1.) For symmetric E

y
2_.2.% 1 1 1
K =Y )® tann a(-g— 1) (X297 = x241-YD)? cotha (X2+1-Y2)2
K
2 2 2, 4
— X 5 5 _ coth «|X? + 9——(—1—%—“—)—-2
Y2(1 _ e ) X2 + -C (1-Y7) 1 W2(14 e
m.Y 2 Me m Y2
i we(1- =) i
miY

(30)
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2.) For antisymmetric Ey

2_ 2 1 1
&K =Y )% onn oe(lz- “1) x2-v2)% = x%41-Y®)? tanh a(X2+1—Y2)%

K
2 2 2
= X tanh o |x2 ¢ —S-(=Y ) 3
2 2 m
2 m 2 - 2
v2(1- —Sp) | X2 ¢ ST 14 W1 —5-)
m.Y 2 e m.Y
1 w (1" —y s
miY

(31)



3 DISCUSSION OF THE DISPERSION EQUATIONS

3.1 GENERAL DISCUSSION

As was mentioned in the introduction, only trapped
modes will be considered in this paper. Trapped modes may
be classified either as body waves or surface waves. The
amplitudes of both of these waves decay exponentially as
one goes out normally from the plasma-dielectric interface,
Their behavior inside the plasma, however, does differ in
that a body wave has an oscillatory solution while a
surface wave has a damped solution as one travels into the
center from the plasma boundary. If we now look at our
field solutions given by Eqs. 12 through 23, what we have
just said is that 6 must be real and yl and yz can be
either real or imaginary. If 6 is to be real, then 6
written in terms of the new parameters X and Y gives us

5 = (g% - -‘*’; 0} - e 3% ky?)?

c c

which shows us that X must be greater than\fﬁ§, For the
remainder of the discussion, we will assume that K = 1 and
thus only the region to the right of the light line is of
interest to us in our analysis. Since 6 must be real for
trapped modes to occur, we may conclude from the following
inequality that 71 must also be real:

2
2 2 2
vl=ﬁ—‘°c—ze>a > 0
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Thus, surface waves are those waves having 71 and 72 real.
Solutions for which 74 is real and 72 is imaginary

exhibit both damped and oscillatory behavior.  For shorter
wavelengths, however, the oscillatory behavior tends to
dominate so these solutions will be referred to as body
wave solutions. Looking at Fig. 2, the trapped mode regioh
lies to the right of the light line and the oscillatory or
waveguide modes occur in the area to the left of the

light line. Those sections in which 72 is imaginary, i.e.
possible body wave regions, have been distinguished from
possible areas in which surface wave solutions may occur.
At very low frequencies, the slope of the line separating
the ion body and surface wave regions is equal to the large
wavelength 1limit of the ion acoustic wave phase velocity.
Thus, this line is called the ion acoustic 1line. The line
separating the electron body and surface waves at very

high frequencies is called the electron thermal line.

If one examines either of the two dispersion
equations (Eqs. 28-29), it is readily noticed that they
are dependent on five different parameters:

1.) mi/me-—the ion to electron mass ratio

2.) K--the relative dielectric constant

3.) oa=--the normalized electron plasma frequency

4,) b/a--the ratio of the distance between the conducting

plates to the plasma slab width



2 34nold

o_nﬁE\_E GNV No_u>>\u H0d SNOI934 3JAOW Q3ddVdl

18

s d
(*%m/garx
»O ¢O! 20! | ol l e 2.0 e »-O!
] ) N j T ) I I T T —A. 0t
. pd i
\ .
7
/
\\
(S 3AVM 3V4HNS NOI (80 S3AvM Ad08 NOI \\
@i, INFT D1LSNOJY  NOI \\ 4 o
‘ g~
/
7/
v
7
/
\\
s 12
/
\\ =
% g
/ €
\\ LS
(S3) JAYM 3Dv4dNS NOWLD3IT3 \\‘..f.tll.l AN LHOM
v 1.
/
/
/
~ .t
-/
7
(83) S3IAVM AQOS NOM10313

7

/




- 19 -~

5.) c¢/W--the ratio of the free space speed of light to the
electron thermal velocity.
For purposes of numerical calculation, it is assumed
that mi/me = 105 and K = 1 unless otherwise specified.
Both the symmetric and antisymmetric dispersion equations
are studied for different Values of the remaining three
parameters o, ¢/W, and b/a. 1In particular, the following
cases will be éonsidered in this paper:

1.) For symmetric E

Case I -~ a = 0.1, ¢/W = 102, b/a = 2

Case II -- a = 0.1, c/W = 102, b/a = 1

Case III -- o = 0.1, c/W = 102, b/a =

Case IV -- o = 0.1, c/W = 103, b/a =

Case V -~ o =1.5, ¢c/W = 4.2x102, b/a->w,
5

mi/me = 3.66x10

2.) For antisymmetric Ey

Case VI =-- a = 0.1, c/W = 102, b/a = 2
2

Case VII ~~ «.=.0.1, c¢/W =.10,, b/a =1

Case VIII-- o = 0.1, c/W = 102, b/a o

Case IX ~-- a = 0.1, ¢/W = 103, b/a = 2
2

Case X -— 1.0, ¢/W = 107, b/a ~w

It should be noted that the values used in Case I are
the same as those used by Andersson and Weiséglaslo in
which similar work was done in the low‘frequency range for
a plasma cylinder. 1In analyzing our dispersion equations,

we will extend their work in three ways. First, we will

study and compare the dispersion relations for both
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symmetric and antisymmetric longitudinal E fields. Also,
we will consider the effects of changing the plasma width
and the distance separating the conducting plates. And
finally, we will study electron body and surface waves as
well as trapped ion modes.

By letting b/a go to one as in Case II and to infinity
as in Case I1I, we can see how moving the conducting plates
influences the behévior of our dispersion curves. Case IV
is included to show the changes resulting from decreasing
the electron temperature. Case V allows us to compare our
theoretical results with the experimentai data of Little
and Jonesg. In Cases VI through IX, we will be looking
for differences between the antisymmetric dispersion
equations and their respective symmetric counterparts.

Case X is of interest since it will enable us to see what
effects thanging the plasma width has on the trapped modes.

When we appiy the above cases to physical situations,
we see that changing the distance between the conducting
plates gives us:

1.) for b/a—w, a plasma slab confined by a dielectric9
which may serve as a model for the ionosphere or for

a plasma discharge in free space
2.) for b/a = 1, a plasma-filled parallel -plate wavegu:"LdeI2
3.) for b/a = 2, a partially-filled, parallel plate wave-

gui&a14
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3.2 THE SYMMETRIC DISPERSION EQUATION
Let us consider Case I in defailh Looking at Fig. 3,
we notice that a surface wave exists in the frequency
ranges w < wpi/{E'and w > wpi while body waves are
supported by the plasma slab for frequencies below w

pi
and above “pe' The ion and electron body waves are
labeled in such a way fhat the number associated with each
of them is equal to the number of half wavelengths between
X = -a and X = +a.

Only the lowest harmonic body wave exists for
frequencies much below mpi' The low frequency linear

approximation for this wave is
b ;
Y= af( o 1) X = 0.1X (32)

For shorter wavelengths, all of the ion body waves
asymptotically approach the ion plasma frequency, The
ion surface wave has the low frequency representation

(Appendix A):

For large values of B, the frequency of this surface wave
approaches wpi/iz. This is analagous to the electron
surface wave in a cold plasma-filled waveguide (Trivel-

piece and Gouldz).
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For wave numbers near the light line, all of the ion
body waves except for the lowest order one are shifted
vertically. This region will be referred to as the
transition region. To the right of the transition region,
the oscillatory body wave behavior dominates. The ion
body waves are labeled for this region. To the left of
the transition region, we have a superposition of body and
surface waves and neither wave dominates. This behavior
is indicated for Ey in Figs.b4 and 5. As we increase X
and go through the transition region, the imaginary propa-
gation constant 12 becomes larger. Indeed, the lowest
order body wave existing to the left of the transition
region (IB3) displays the same oscillatory behavior in
this region as does the lowest order ion body wave (IB1l)
that lies to the right of the transition region. This
indicates a rather strong coupling of the body wave
solutions in the transition region. It should be noted
that the transition region occurs along the line given
by Eq. 32. The presence of the parameter b/a indicates
that the coupling depends on the location of the conducting
boundary.

For frequencies between the ion and electron plasma
frequenéies, only an electron surface wave is found to
exist. When @ < < ©oe this surface wéVe solution has the
same slope as the lowest order ion body wave has when

w < <L wpi'
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The first three body wave modes have been drawn for
frequencies above wpe“ For w > wpe and large values of X,
the dispersion relation can be simplified to the linear

equation (Appendix C):

Thus the group and phase velocities in this region approach

the electron thermal velocity.

3.3 THE ANTISYMMETRIC DISPERSION EQUATION

For antisymmetric Ey, Case VI (Fig. 6) is comparable
to Case I. The most significant difference between the
antisymmetric and symmetric dispersion equations is seen
to be the absence of a very low frequency (w < < wpi) ion
surface wave. When B is small, the lowest order solution
is to the left of the ion acoustic line and is a body
wave. For large B, this curve crosses the ion acoustic
line and becomes a sﬁrface wave which asymptotically
approaches wpi/{it

For wpi << w <K <LK wpe’ the electron surface wave for
the antisymmetric case is found to be shifted more to the
left than for the symmetric case. It should be noted that
this is true for all cases except b/a— o (For that special
case, the surface wave solution coincides with' the
dielectric light line). We therefore may conclude that the

group and phase velocities for the surface waves given by
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the antisymmetric cases are greater than or equal to their
respective symmetric counterparts.
For w > Yoo and large values of B, the surface wave

and body wave solutions for the antisymmetric cases also

approach the electron thermal line.

3.4 EFFECTS OF THE CONDUCTING PLATES

Setting b/a = 1 for antisymmetric Ey (Fig. 7) results
in a low frequency cutoff below which no ion body or
surface waves can propagate. Similarly, it is found that
no ion surface wave exists for symmetric.Ey (Fig. 8) when
b/a = 1. For w < < wpi’ increasing the distance between
the conducting plate and the plasma-dielectric interface
causes the lowest order body wave solution to shift to the
left until at b/a— o, it coincides with the light line
(Figs. 3,6,9,10). The very low frequency ion surface
wave is not noticeably affected by changing b/a as long
as b/a > 1.

For smaller values of X and w near wpi’ it has been
mentioned that there is a transition region in which there
appears a coupling between the different body wave
harmonicslo. If we compare Cases I - III or VI - VIII, we
see that decreasing b/a weakens this coupling and shifts
the transition region more to the right.

For w < < wpe’ the electron surface wave, like the
lowest order ion body wave for w < < wpi’ is shifted to

the left when b/a is increased. We therefore may
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conclude that increasing b/a increases the phase and group
velocities of this surface wave. When w > > wpe’ changing

b/a has negligible effect on the body and surface waves.

3.5 TEMPERATURE EFFECTS

Since the approximate low frequency ion surface wave
solution for symmetric Ey is proportional to the electron
thermal velocity (Appendix A), decreasing this parameter
as in Case IV (Fig. 11) causes a shift to the right in the
surface wave curve. The lowest order ion body wave for
very small wave numbers is not affected by changing Te
(Figs. 11,12). The higher order body wave harmonics are
found to be more spread out and occur at lower frequenéies
when the electron temperature is decreased. 1In contrast,
it is noticed that the electron body waves are bunched
together so as to form what might be considered a continuum.
For large wave numbers, the electron body and surface
waves asymptotically approach the electron thermal line

which is shifted to the right when Te decreases.

3.6 INFLUENCE OF THE PLASMA WIDTH

Increasing the width of the plasma slab (Case X--
Fig. 13) results in phenomena similar to those that were
noticed when Te was made smaller. The higher order ion
body waves near the light line are more spread out and
occur at lower frequencies. The electron body waves are
bunched about “pe' The most noticeable change is in the

electron surface wave for w < wpe’ A backward surface
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wave was found to exist when @ = 0.1. By increasing the
plasma width, we now have a forward wave. This
phenomenon was previously observed by Diament,
Granatstein, and Schlesingerl1 for dipole modes. No

analogous behavior occurs for the symmetric case.



4 APPROXIMATIONS

There are certain approximations that are sometimes
used to simplify the analysis of the dispersion equation.
Two of these which are appropriate in studying trapped
mode propagation are the quasistatic approximation’
(Trivelpiece and Gouldz, Crawford and Tataronis14,
OVBrien15) and the heuristic approximation (Little and
Jones97 Andersson and Weissglaslo)°

The quasistatic approximation is obtained by letting

¢c—~ow in 6 and Yy S© that 6 and Y, B As shown in

Appendix D, this is equivalent to taking

at the beginning of the analysis. The resulting symmetric
dispersion relation is
2
%
€

= tanh B(a-b) = coth pa - ge coth Y o2 (33)
K w 72€+

or, written in terms of X and Y(wpi <L wpe)’

tanh a(g-—l) X = coth aX -
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2 2
X coth a|x? 4 (1Y) 3
2 e 2 cz(l—Yz) 3 2 Mo
Y1 -—7)|X + - 2 v Q- 2)

m,Y 2 e m.Y

i W (1l - — 2) : i

m.Y
i
(34)

This approximation is valid in the region for which 6 = 8
i.e. X >> Y. For Cases I or II (Figs. 3 and 8), the
significant portion of the body wave and surface wave curves
lies to the right of the light line where X >> Y and thus
our results are in very good agreement with the rigorous
results. There is even good agreement near the light line
since the second term on the right hand side of the disper-
sion equation dominates and this term has been unaltered by
the approximation. For Case III in which b/a — e« (Fig. 9),
the quasistatic approximation breaks down near the light
line. It no longer gives us an ion body wave going into
the origin along the light line, but instead, it goes into

the origin to the left of the light line as
Y = \/ozX

This behavior also occurs for the electron surface wave in
the midfrequency region (wpi <L w <L wpe). It.should be
noted that for confined plasmas having smaller widths,

the differences between the quasistatic and rigorous

results are much smaller than those predicted by Diament
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et. glcll for a plasma column whose width was assumed

large. As a matter of fact, for b/a < 2 and @ = 0.1,
the differences were found to be negligible.

We formulate the heuristic_approximation,by know1edge
of the behavior of the field solutions“ It will be shown
that this approximation predicts the ion body waves fairly
accurately. We begin by using the dispersion relation for
ion waves in an infinite medium

wz _ k2

2 2 2
w_ . k™ + 1/ADe

where k2 is the square of the wave number and lDe is the
electron Debye length. For our particular problem, we
separate k into both transverse and longitudinal components
which are expressed by the equation

2 2 2 2

kW =k, + k, =B + (%1 2

For b/a > 1, examination of the field solutions (Figs. 4,5)

gives us

where n is the number of half wavelengths that exist in
the x direction inside the plasma slab. Even integers of n

represent wavelengths for symmetric Ey and odd integers of



- 41 -

n give A for antisymmetric Ey’ Replacing k2 by our

heuristic approximation, the ion body wave equation is

2 B2 + (&2
w 2a . _ . <
5 = g ) 5= 0 = 1,3,...for antlsymmetrlcﬁ%
“oi B+ (g7 + 1/
p 2,4,...for symmetric Ey
(35)

or in terms of X and Y,

2 nw%ﬂ%
oy I + Ga)
2

Y = P T’ n=1,3,...for antisymmetric E
2 nmy2 . c_|3 .
wpe[% vy o Eﬁ] 2,4,...for symmetric E
(36)

Using the values given in Case III, a Brillouin diagram
of the above equation for symmetric Ey is drawn in Fig. 14.
There are some significant differences between the results
shown in Fig. 14 and those obtained from the full set of
equations (Fig. 9). First, the coupling phenomena of the
different ion body waves is not found using the heuristic
model. Also, we do not obtain the lowest order ion body
wave going into the origin for very small wave numbers.
Finally, if we examine the zeroth order heuristic solution,
we find that it correctly describes the low frequencybion
surface wave but at large wave numbers, it approaches
©ni rather than “pi/JEi

Experimental results on low frequency waves have been
obtained for a cylindrical plasma column by Little and

Jonesg, Although their geometry was cylindrical, the

y
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agreement between their experimental data without a
magnetic field and our theoretical values is seen in Fig. 15
to be very good. It would appear that Little and Jones
were measuring the ion surface wave as well as the lowest
order body wave. If we use the values in Case V and look
at the Brillouin diagram for antisymmetric EY (Fig. 16),
it would seem that it should be possible to also measure
the dipole mode corresponding to our lowest order anti-
symme tric mode.

Finally, we wish to examine the influence of"
collisional and Landau damping which so far have been
neglected. 1In order to include the effects of collisions
in our previously obtained dispersion relations, we let

wz = w(w ~iv)

and

B = ﬁR - iﬁI

where v is the electron-neutral collision frequency for
momentum transfer and Pr and ﬁI are the respective real
and imaginary parts of the longitudinal propagation constant.
For reason of simplification, we will use the heuristic
approximation for symmetric EY to study the collisional

damping of ion waves. Assuming
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1 2 nm, 2

De
and substituting the above equations into this
approximation, we get the following two equations:

1.) Real part

2 .
—9—§-=léR2 - BI2 + (21)?]KD62 (37)

w_ .
pi

2.) Imaginary part

2
vw _
5~ 2 Pr P1 Mpe (38)

pi

w

From these two equations, we obtain the following:

vw

; ~ nWe_ . '
w0l = (——BL? +\/E02 - (—BHZ|? 4 V27
‘pe pe

(39)
Using the experimental values for a, W, wpi/wpe’ and v
measured by Little and Jones®, we see that B;/Bp gets
larger when w is made smaller (Fig. 17). Thus, there is
some low frequency cutoff below which the ion body waves
and surface wave (n = 0) will be significantly damped by
collisions. It also should be noted that for low

frequencies, the wave damping becomes more dominant as n
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is increased. This would explain why Little and Jones9
were only able to measure the lowest order ion body wave.
For » sufficiently large, ﬁI/ﬁR asymptotically'approaches.

the equation

g
1 1 (40)

and the collisional damping becomes insignificant. If we
examine Fig. 15 at these frequencies, however, we see that
the different body wave harmonics are bunched together and
so distinguishing between them would be difficult.

It is well known that Landau damping of electron waves
is negligible when 51De << 1. As shown by Klevans and
Primackle, L.andau damping of ion waves is negligible when
BxDi << 1. Writing these inequalities in terms of our
parameters Y and X, we have that:

1.) ion wave Landau damping is negligible when
<

T. W

2.) electron wave Landau damping is negligible when
X L =

The above inequality for ion waves helps to explain why

it would be difficult for Little and Jones9 to measure

field quantities near the ion plasma'frequency;‘



5 SUMMARY

The field solutions and dispersion relations,
agssuming both symmetric and antisymmetric longitudinal
electric field components, have been determined for the
slab configuration in Fig. 1. A two fluid model with a
scalar pressure term was used to take into account the
effects of ions and electronsg Thg dependence of the
symmetric and antisymmetric dispersion relations on
electron temperature, slab thickness, and waveguide
width has been discussed in this report. For w < wpig
an interesting coupling phenomena between the different
ion body waves was found to occur for wave numbers near
the light line. Unfortunately, the possibility of
measuring such behavior is poor sincercollisional
damping dominates at these frequencies.

Approximate dispersion equations were obtained by
using a heuristic argument and the quasistatic approximation.
The heuristic approximation gives a fairly accurate
representation of the ion body waves and the low frequency
portion of the ion surface wave. The advantage of this
approximation is that we have a simplified expression to
work with when studying .such phenomena as collisdional
wave damping. The agreement between the quasistatic and
rigorous results was found to be quite good for smaller
slab thicknesses and waveguide widths. It thus serves as

a useful and valid approximation in many physical

problems14’15.
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Finally, our lowest order ion body wave for
symmetric Ey was found to agree favorabiy with experimental
data measured by Little and Jones9 in a cylindrical
geometry.

Since experiments are actually performed in inhomo-~
geneous plasmas, a significant extension of this report
would be a study of ion waves propagating in an inhomo-
geneous plasma. This work would represent an extension
of Crawford and Tataronis'14 analysis on electron waves
to include ions and ion waves. Another related topic
would be the investigation of the dipolé ion mode in a
plasma cylinder. The circularly symmetric mode has been
treated by Andersson and Weissglaslo, It would be
interesting to see what similarities exist between the

dipole mode and the antisymmetric mode in our problem.



10.

11.

12,

13.
14,
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APPENDIX A

LOW FREQUENCY ASYMPTOTIC SURFACE WAVE AND BODY WAVE

SOLUTIONS (w << “pi)
It will be assumed in these appendices that K = 1
5
and mi/me = 10",
A.1 SYMMETRIC Ey
2 3

1.) Cases I and IV--a¢ = 0.1, ¢/W = 10 or 10", b/a = 2
Assuming X > Y, the dispersion relation (Eq. 30)
simplifies to

2
2 2. a b 1 m, X
&% - 1% Ep 2 -1) =4 3
Y (] 2 mic 2
ame(x ———F—‘Y)
~ m J
e (A.1)

This equation may be rearranged to the following one whiqh~

is quadratic in Y2:

2
m,cC
-—i—-z- [atz' (-2 -1) + 1] Y4
meW

2

2 b me il 2.2 2 b 4
-la (Z-l)(1+m)+l+;— XY + «a (;-1)X~0
e

(A.2)
For the values given above, Eq. A.2 may be simplified to
the following:
2
m W
225 2 E-nxteo 3y
m;c

v? - a2 (g -1) X2Y
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Solving for Y, we obtain

2 x| 2 b 4‘b éméwzzb
Ye = |o” (2 -1) o+ \fe© -1 - 25 o (2 -1)
2 - a m.c a
i
or
2
2 2.2 b 11 m W
Y = o X (‘a— ""1) [‘2‘1‘_ (E— 2 02(2 _1) (A°4)
) o my a
The body wave solution is
b 1
Y = @« (; -1)2 X (A.5)
and the surface wave solution is
w
Y ~ 2L X (A.8)
wpe

2.) Case II--¢ = 0.1, c/W = 102, b/a = 1

Assuming the same conditions as in part 1 except that

b/a = 1, Eq. A.2 gives us the following:

m.cC m,
—— - (L4 %2
meW m

0 (A.7)

e

Thus, the body wave solution for very low frequencies is

(A.8)

e
u
i

"
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3.) Case III--o = 0.1, c/W = 102, b/a —w

The simplified dispersion equation for b/a—w is

2.2
2 m.X'Y
2
x2 -vHt ~ L i > (A.9)
o g m.C 9
om (X° - -2 5 Y )
e
meW

If X and Y are very small and are of the same order in
magnitude, then the left hand side of the equation

predominates and we get

et
14
s

(A.10)

which is the body wave solution. If X >> Y, the above

equation simplifies to

Yz minYz
X = =— .
(0] m.cC
om (Xz - 1-2 Yz)
e
m W
e
o m 02 m
) . .
X - Y2) (x2 - —1—§ v2) = L x2y2 (A.11)
mw
e e

Since X and Y are assumed small, the lowest ordered terms

will predominate and give us

y = R x (4.12)

which is the surface wave solution.
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A.2 , ANTISYMMETRIC Ey
4.) Cases VI and IX--g¢ = 0.1, c/W = 102 or 103; b/a = 2
Assuming X > Y and Y << wpi/wpe gives us the following

simplified dispersion equation:

%) = Q-1 = a+a L x (A.13)
a
Y m,

2
X -Y

Keeping only the significant terms, the approximate body

wave solution is

D=

Y = (1 - %) X (A.14)

5,7 Case VII--« 0.1, c/W = 102, b/a =1

Letting b/a = 1 in Eq. A.14 we see that there is no
low frequency body or surface wave solution.
6.) Cases VIII and X--a = 0.1 or 1.0, ¢/W = 102, b/a~+
The approximate low frequency dispersion equation for
the above conditions is
2.3 m,

X2 - Y% = o721 + L x2) (A.15)

m
e

For very small values of X and Y, the left hand side of

this equation predominates and thus the body wave solution

is

Y = X (A.16)
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APPENDIX B

MIDFREQUENCY APPROXIMATE SURFACE WAVE SOLUTIONS

(wpi <L w <L wpe)

B.1 SYMMETRIC Ey
1.) cCases I and IV--a = 0.1, c/W = 102 or 10°, b/a = 2

Assuming X > Y, the dispersion equation simplifies to

2
2 2, O b 1 W X
X" - Y) (-1) = = -
;E a o ¢ Yz
or
1 b 2 b W 2
— 4+ o= -1)| Y =|la(E=-1) + 2| X (B.1)
e ] e ]

For the above values of a, ¢/W, and b/a, the equation is

approximately

y = a(‘-;’- ~1)% x (B.2)

2.) Case Il1--a = 0.1, c/W = 102, b/a =1

When b/a = 1, equationB.l gives us the following

surface wave solution:

o (B.3)
2
3.) Case III--a¢ = 0.1, ¢/W = 10", b/a—w

The approximate dispersion equation for the above

conditions is
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o

Do

¥ Xz (B.4)

x2 - %)

Q

64

Again for this case, the left hand side of the equation

predominates and our solution for Y is
Y & X - (B.5)

B.2 ANTISYMMETRIC Ey

4.) Cases VI and IX~-¢ = 0.1, c/W = 102 or 103, b/a = 2
The approximate dispersion equation for the above

conditions is

2
2 . 2, o b wX
@YY & @-n e - B
Yz a cY
or
¥ . 2 l:oe(g -1) + -‘g] x2 (B.6)
b
Thus the solution for Y is
a.d

5.) Case VII--a = 0.1, c/W = 102, b/a = 1
Equation B.6 for b/a = 1 gives us the following surface

wave solution:

W
oc

Do

Y = ( )2 X (B.8)
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6.) Cases VIII and X--a = 0.1 or 1.0, c¢/W = 102, b/a —w®

The dispersion relation for this case simplifies to

&2 - v3)E = o2 - 2 (B. 9)
C

Over the particular range of values we are considering, the

left hand side of the equation predominates and thus

Y = X (B.10)
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APPENDIX C

HIGH FREQUENCY ASYMPTOTIC SURFACE WAVE AND BODY WAVE
SOLUTION (w >> wpe)
The following development is valid for all cases
studied in this paper. . Assume that X >>.Y and that X is
linearly related to Y. Then either the symmetric or

antisymmetric dispersion equation for large Y may be

approximated as follows:

2

-X = X - X (c.1)

2
Y2 [XZ _ _EE YZ]
w

Rearranging this equation, we get

X - _c___. Yz o~ _..}_(_ (Coz)

Using the above assumption that Y is linear in X, we obtain
the following high frequency solution for our dispersion

equation:

=

X (C.3)
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APPENDIX D

DERIVATION OF THE QUASISTATIC DISPERSION EQUATION
For the quasistatic approximation, we approximate

Eq. 7 by the following:

VX E =0 (D.1)

E=- 7o (D.2)

We shall begin by solving for the field solutions inside

the plasma (0 <x< a). If we make the same assumptions

that were used in developing the field solutions from the
full set of Maxwell's equations, taking the divergence

and d/dt of Eq. 8 gives us

Ve (LEe g -e® =0 (0.3)

Using Egqs. 2,4, and 5 to solve for n,, we obtain

€ €
O

vz(v- E) +e¢ V- E (D.4)
e

Thus, Eq. D.3 may be written as

E) +e¢e V:*-E=0 (D.5)
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If we now let E = = V@ and assume that Ey is symmetric,

the solution for # is

# = A cosh Bx + B cosh Y oX

which gives us

E_ = iB(A cosh Bx + B cosh sz)

E_ = -BA sinh Bx - VZB sinh Y oX

To write H, in terms of E, we use Egs.

obtain the following:

(D.6)

(D.7)

(D.8)

3,4,8, and D.4 to

(V- E) (D.9)

Using Egs. D.7 and D.8, the solution for H, is

H, = Aweoe sinh Bx

(D.10)

To obtain the field solutions inside the dielectric

(a < x < b), solving Eqs. 5 and D.l simultaneously gives us

E_= C cosh Bx + D sgnx sinh Bx

t=d
ii

iC sinh Bx + iD sgnx cosh Bx

(D.11)

(D.12)
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From Eqn. 8, the solution for Hz is

iweoK
H = - ———— (C sinh px + D sgnx cosh px) (D.13)

B
Using the boundary conditions given by Egs. 24 to 27
and the above field solutions, the dispersion equation for

a symmetric Ey component is

) eZ
£ tanh B(a-b) = coth Ba - —Eﬁ— £ cothn Yo2
K w  Yge,
(D.14)

It should be mentioned that the same results could have
been obtained from our previously determined dispersion
equation (Eq. 28) for symmetric Ey by setting 6 and Yq
equal to B.

A similar procedure as just outlined will give the

following quasistatic dispersion equation for antisymmetric

E_ ¢
y

w2
£ tanh B(a-b) = tanh Ba - —Eg— £ tann Vg2
K w Vo€,

(D.15)



